A POMDP-Based Optimal Control of P300-Based Brain-Computer Interfaces
نویسندگان
چکیده
Most of the previous work on brain-computer interfaces (BCIs) exploiting the P300 in electroencephalography (EEG) has focused on low-level signal processing algorithms such as feature extraction and classification methods. Although a significant improvement has been made in the past, the accuracy of detecting P300 is limited by the inherently low signal-to-noise ratio in EEGs. In this paper, we present a systematic approach to optimize the interface using partially observable Markov decision processes (POMDPs). Through experiments involving human subjects, we show the P300 speller system that is optimized using the POMDP achieves a significant performance improvement in terms of the communication bandwidth in the interaction.
منابع مشابه
A POMDP Approach to P300 Brain-Computer Interfaces*
Most of the previous work on brain-computer interfaces (BCIs) using P300 has been focused on feature extraction and classification algorithms to achieve high performance for the communication between the brain and the computer. While significant progress has been made in such lower layer of the BCI system, the issues in the higher layer have not been addressed sufficiently. Existing P300-based ...
متن کاملControl of a 2-DoF robotic arm using a P300-based brain-computer interface
In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...
متن کاملSelecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface
User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011